• Wirrvogel@feddit.de
    link
    fedilink
    English
    arrow-up
    24
    arrow-down
    5
    ·
    1 year ago

    The question is more like: “How dependent is France on uranium which is a finite resource?”

    “The demand for uranium continues to increase, but the supply is not keeping up. Current uranium reserves are expected to be depleted by the end of the century, and new sources of uranium are hard to find. As a result, uranium prices have been steadily rising, with some estimates predicting a doubling of prices by 2030. This is causing a global uranium squeeze, where the demand for the resource is outstripping the supply.”

    France: Let’s build more nuclear plants, also do not invest into renewable energy, also since we are used to wars for oil, why not having wars for uranium in the future too?

    • Padit@feddit.de
      link
      fedilink
      English
      arrow-up
      11
      arrow-down
      3
      ·
      1 year ago

      Well, “By the end of the century” is almost 80 years away, that is significantly longer than any normal nuclear power plant lasts.

      Also it is very difficult to know which exact price someone pays for uranium because they normal dont buy on the spot market, but via long lasting contracts.

      So from my point of view we don’t have sufficient information for a proper estimation of the situation.

      • taladar@feddit.de
        link
        fedilink
        English
        arrow-up
        3
        arrow-down
        2
        ·
        1 year ago

        The end of the century at current rates of use which means about 77 years. At just 10% increased use annually that would double roughly every 7 years which means it won’t last nearly that long.

    • Meowoem@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      9
      arrow-down
      4
      ·
      1 year ago

      The real key factor is as the cost of uranium continues to go up and suffers potential shortages and supply issues the cost of installing solar and wind continues to drop - they got planning permission for a solar farm near me about a year ago and it’s already half way through having pannels installed, the speed they can do it is only going to keep increasing especially as more automated tools get developed. Then there’s the almost certainty of a breakthrough in chemistry reaching market which significant reduces cost and increases the range of locations suitable which would again drastically lower price per kWh while the price of running nukes continues to rise and they’re locked into decades of economic loss or they’ll choose to close them and all that investment and effort will be for nothing.

      • Wirrvogel@feddit.de
        link
        fedilink
        English
        arrow-up
        6
        ·
        1 year ago

        Solar ans wind power will never ever be a good baseline energy production méthod. It’s complementary.

        https://www.ise.fraunhofer.de/en/press-media/press-releases/2023/german-net-power-generation-in-first-half-of-2023-renewable-energy-share-of-57-percent.html

        No, it is a perfekt baseline energy production method. France is buying our renewable energy, because it can’t produce enough with its broken nuclear power plants and the ones not producing full because of the drought. The numbers do not lie.

        • Claidheamh@slrpnk.net
          link
          fedilink
          English
          arrow-up
          0
          arrow-down
          2
          ·
          edit-2
          1 year ago

          Also, what I see in that graph is that your grid’s baseline isn’t renewables, but fossil fuels. That’s shameful.

            • Claidheamh@slrpnk.net
              link
              fedilink
              English
              arrow-up
              1
              arrow-down
              2
              ·
              edit-2
              1 year ago

              Yes, and if you hadn’t closed your nuclear plants you wouldn’t have needed to rely on carbon-emitting russian gas-burning power plants.

              Renewables are great. But like anything else, they’re not suitable for all use cases. And where they’re not suitable you have to use greenhouse gas emitting power plants. Wouldn’t it be much preferable if those were instead NPPs?

              People arguing against nuclear power are arguing for oil/gas/coal, whether they know it or not.

      • Sodis@feddit.de
        link
        fedilink
        English
        arrow-up
        4
        ·
        1 year ago

        Ah yes, 4th generation nuclear reactors will save us, as will fusion reactors. We could make stuff work with existing technology, but that’s somehow not good enough. The whole future plans section of the wiki article https://en.wikipedia.org/wiki/Breeder_reactor reads like the technological challenges of these type of reactors are not as solved as you state it in your post.

        • Pampa@climatejustice.social
          link
          fedilink
          arrow-up
          2
          ·
          1 year ago

          @MattMastodon @AlexisFR @Wirrvogel

          The optimum imho is:

          1. The bulk of the generation from wind and solar, and nuclear for 15% - 20% base load. Also some Geothermal where cheap but it’s potential is small.

          2. Grids improved to cover local and intermediate renewable generation, and extended to facilitate import/export.

          3. Variable electricity pricing for demand shifting.

          The result is vastly reduced need for storage, probably batteries used intelligently in a hierarchy of grid and home, compared to the naïve “just build wind and solar and batteries.”

          Then add in:

          1. A 90% transition from personal cars to free green public transport (#FGPT), taxis, e-bikes, bicycles, and walking.

          This all needs no new technology (although for nuclear there are several advances not yet used at scale: molten salt, small, modular, U238, thorium), it needs a fraction of the rare earths, and delivers a huge in reduction steel production courtesy of car recycling.

          #Energy #Renewables #ClimateCrisis #Climate #Nuclear

          [P.S. Dams damage eco-systems so I’m not in favour of more hydro generation, and pumped hydro storage needs the spare water too.

          Biomass not “net zero” and obviously not “zero” which we actually need. It’s just more carbon burning plus extra pollution from the agriculture and other products of combustion. It increases land use, and at present the industry is full of corruption with trees being burned sometimes alongside shredded car tyres… and subsidised!]

        • Sodis@feddit.de
          link
          fedilink
          English
          arrow-up
          2
          ·
          1 year ago

          Well, you can potentially design them in a way, that you can control the energy output more easily. However, then they will be even less economical than they are now. If you run at lower output, you waste more fuel.

            • Svante@mastodon.xyz
              link
              fedilink
              arrow-up
              1
              arrow-down
              1
              ·
              1 year ago

              @MattMastodon @Sodis Only about 40% of demand can be directly met from volatiles (wind and solar), i. e. no intermediate storage. The rest has to come from »backup« or »storage« or however you call it.

              Current storage tech is still almost 100% pumped hydro. Batteries have not made a real dent there yet. But pumped hydro is not enough by far, even potentially, and batteries have a long way to go to be even as scalable as pumped hydro.

              So, backup. The only clean, scalable backup is nuclear.

              • AbolishBorderControlsNow@mastodonapp.uk
                link
                fedilink
                arrow-up
                2
                arrow-down
                1
                ·
                1 year ago

                @Ardubal @Sodis

                We have to be careful. Different counties have very differnt energy make ups. I live in the UK where nuclear is

                I don’t understand where you got 40% from. This seems arbutrary.

                In the UK Nuclear is 15% and renewables about 40% (over the last year) we mainly burn gas for the rest.

                • Svante@mastodon.xyz
                  link
                  fedilink
                  arrow-up
                  1
                  ·
                  1 year ago

                  @MattMastodon @Sodis Careful about labels. »Renewables« often includes biomass (which is just fast-track fossil tbh) and hydro (which is not so volatile). I’m talking about wind and solar specifically (volatiles).

                  40% is roughly the mean capacity factor of a good mix of volatiles. This is what you can directly feed to the user from the windmill/panel, without storage. You can expand a bit by massive overbuilding, but you can’t overbuild your way out of no wind at night.

                  • @Ardubal @Sodis

                    Mostly we don’t use energy at night. In the UK there is a peak in the morning. In the UK we mainly use gas to fill this. We will have to find a storage solution as nuclear can’t be upscale that quickly. Gas was meant to be used just to fill the gaps but it’s quickly become a staple.

                    We need to find a way of smoothing the graph. Energy storage is the best option in the short term.

                    Or we can vary use.

                    #nuclear #renewables

          • Svante@mastodon.xyz
            link
            fedilink
            arrow-up
            1
            ·
            1 year ago

            @Sodis @MattMastodon Nuclear power plants can quite easily do load following. It happens regularly e. g. in France. However, since it has the lowest running costs, other sources are usually cut first as far as possible.

        • Claidheamh@slrpnk.net
          link
          fedilink
          English
          arrow-up
          1
          ·
          1 year ago

          It can’t be scales up and down following need.

          Yes, it runs at full power most of the time. That’s what being a “baseline energy source” means.