You don’t have to do any of that to repurpose the batteries.
If the car is junked due to a wreck or other failure unrelated to the battery, grab the cells out if it and use them for something else. Eventually, the car body and the battery will be worth more as separate components, the car body will be recycled for the steel and aluminum, and the battery will be repurposed. It’s not complicated.
You know that each charge/discharge cycle irreversibly destroys the chemistry of Li-ion right? Li-ion as a technology wears out every time you recharge.
The chemical cell is a replacable part that must be regularly manufactured. Its near worthless after ~3000 cycles or so given today’s chemical compositions. Hopefully future improvements to recycling, cycles, durability, etc. etc. can make this number better. But the ~3000ish cycle limit is innate to today’s chemistries.
The exact number depends on temperature, charging characteristics (faster charge causes more wear-and-tear internally, slower-charge is better but slower/less convenient), and a myriad of factors. These are things that ultimately are thrown away as they become useless / worn out. The only way to break this cycle is to grind up the battery, dissolve the useful chemicals into acid, split out the metals into purified parts, and then rebuild the battery from scratch.
If a car gets into an accident and its cells are still within their usable lifetime, maybe you can repurpose the batteries. But its not clear how you’re supposed to track the durability / wear-out factor of those cells. Recycling them entirely back into fresh and purified chemical compounds for greatest consistency would be the best solution (as is done currently for Lead-acid batteries at 99%+ recycling rates). The issue is that Li-ion chemistries for recycling haven’t been fully figured out from a profitability perspective yet, so no such large scale plants exist.
Its near worthless after ~3000 cycles or so given today’s chemical compositions
That’s not true. It typically takes that many cycles to get down to 80% of the original capacity, which is not “near worthless”. Packs at this capacity can be used for a long time in applications such as fixed solar batteries, as I mentioned in my original response to you.
You don’t have to do any of that to repurpose the batteries.
If the car is junked due to a wreck or other failure unrelated to the battery, grab the cells out if it and use them for something else. Eventually, the car body and the battery will be worth more as separate components, the car body will be recycled for the steel and aluminum, and the battery will be repurposed. It’s not complicated.
https://www.nature.com/articles/s41597-021-00954-3
You know that each charge/discharge cycle irreversibly destroys the chemistry of Li-ion right? Li-ion as a technology wears out every time you recharge.
The chemical cell is a replacable part that must be regularly manufactured. Its near worthless after ~3000 cycles or so given today’s chemical compositions. Hopefully future improvements to recycling, cycles, durability, etc. etc. can make this number better. But the ~3000ish cycle limit is innate to today’s chemistries.
The exact number depends on temperature, charging characteristics (faster charge causes more wear-and-tear internally, slower-charge is better but slower/less convenient), and a myriad of factors. These are things that ultimately are thrown away as they become useless / worn out. The only way to break this cycle is to grind up the battery, dissolve the useful chemicals into acid, split out the metals into purified parts, and then rebuild the battery from scratch.
If a car gets into an accident and its cells are still within their usable lifetime, maybe you can repurpose the batteries. But its not clear how you’re supposed to track the durability / wear-out factor of those cells. Recycling them entirely back into fresh and purified chemical compounds for greatest consistency would be the best solution (as is done currently for Lead-acid batteries at 99%+ recycling rates). The issue is that Li-ion chemistries for recycling haven’t been fully figured out from a profitability perspective yet, so no such large scale plants exist.
That’s not true. It typically takes that many cycles to get down to 80% of the original capacity, which is not “near worthless”. Packs at this capacity can be used for a long time in applications such as fixed solar batteries, as I mentioned in my original response to you.
https://iopscience.iop.org/article/10.1149/1945-7111/abae37
I will not be responding to you, you seem to be trolling.