Fun fact, being in pronation for long periods of time can put pressure on forearm muscles and restrict blood flow, causing RSIs. It’s why a lot of ergo keyboards are tilted upwards towards the middle.
On the other hand (hah), pronation is super useful for throwing athletes - especially pitchers. Pronating during a pitch gives the ball a spin, which makes it fly faster. But it also reduces pressure on the shoulder by using the forearm muscles as a natural shock absorber.
The latter demonstrates one reason why we are “built like this”. It’s a very useful mechanism for survival, tool use, and agility. The former demonstrates one reason why our physiology is NOT “built for” for computer and office work.
Doesn’t it make it fly further, not faster? Not sure if they’re the same thing here, because I thought the spin counteracted some of the forces of gravity rather than just speeding up the ball so it went further before gravity got it down.
Fun fact, being in pronation for long periods of time can put pressure on forearm muscles and restrict blood flow, causing RSIs. It’s why a lot of ergo keyboards are tilted upwards towards the middle.
On the other hand (hah), pronation is super useful for throwing athletes - especially pitchers. Pronating during a pitch gives the ball a spin, which makes it fly faster. But it also reduces pressure on the shoulder by using the forearm muscles as a natural shock absorber.
The latter demonstrates one reason why we are “built like this”. It’s a very useful mechanism for survival, tool use, and agility. The former demonstrates one reason why our physiology is NOT “built for” for computer and office work.
Doesn’t it make it fly further, not faster? Not sure if they’re the same thing here, because I thought the spin counteracted some of the forces of gravity rather than just speeding up the ball so it went further before gravity got it down.