• BrerChicken @lemmy.world
    link
    fedilink
    arrow-up
    16
    ·
    1 year ago

    I took an entire graduate course in QM and a quantized Universe does, in fact, seem pixelated. That’s exactly how I explain it to people. There’s simply a finite level to how closely you can zoom in. Space, time, and energy are all quantized, and maybe even gravity though we haven’t figured that one out yet.

      • BrerChicken @lemmy.world
        link
        fedilink
        arrow-up
        9
        ·
        1 year ago

        The why is not really known. But we simply cannot. There is not line where one particle ends and another particle begins. The best you can do is give a probability distribution, but some of the particles will be in places where they’re not really supposed to be. This is actually what drives the fusion processes in stars. The nuclei don’t actually have enough kinetic energy to fuse–but she is the protons in one hydrogen nucleus just magically appear in the nucleus of a neighboring hydrogen atom.

        You literally can’t have distances that are smaller than these probability distributions.

    • bionicjoey@lemmy.ca
      link
      fedilink
      arrow-up
      4
      arrow-down
      3
      ·
      1 year ago

      A finite level to how close you can zoom in is very different from pixels. Pixels (or voxels in this case) are indivisible elements of a larger whole that exist along an evenly spaced grid. The universe doesn’t have a Cartesian coordinate system measured in Planck lengths

      • BrerChicken @lemmy.world
        link
        fedilink
        arrow-up
        4
        ·
        1 year ago

        Pixels (or voxels in this case) are indivisible elements of a larger whole that exist along an evenly spaced grid.

        That’s exactly what a Planck unit of spacetime is. And yes, the Universe–like a screen–is divided into an evenly-spaced grid any time you choose a coordinate system.