And yet, after many decades of solar, wind construction. It is the energy source in that pie chart that is sizeable (just as much as all wind and solar) and extremely stable (probably for the last 50 years), without any major construction in the past 30 years minimum.
modern gen 4 plants are MUCH simpler, foregoing PWR loop entirely in favor of liquid metal/salt type reactors, with various different design choices that are all much simpler, and cheaper to build/maintain.
If we see actual development in that field it’s not hard to imagine them playing with the fossil fuels, possibly renewables as well given the base load productivity, and relative lack of waste.
Nearly all of nuclear in the USA was built decades ago. Instead of being “paid off” and being cheaper, its still more expensive to generate electricity with nuclear than nearly all other electricity sources in the USA.
Nuclear is the most regulated: True. Accidents in nuclear have the most consequence, by far, of any generation source.
I would imagine that if we’re just going for disposal, solar and wind are still pretty cheap. With zero recycling wind turbine blades can just be buried after their 25 year life cycle. source.
Same landfill disposal option is available for solar panels at $1 to $5 per panel. source
This would be the level of disposal nuclear has, except low and high level nuclear waste is much more costly and potentially destructive even after disposal.
It can also work as a source of heat for district heating or various industrial processes, and since the plants themselves have no emissions, they can be reasonably placed in cities for this purpose without harming people. Using heat directly is more efficient than converting it to and from electricity.
At the most generous calculation (of nuclear costly only $6,695) that puts nuclear power at 5 x more expensive that solar PV. So if you have a theoretical pure electricity bill on solar PV of $100/month, your theoretical pure electricity bill on nuclear of $500/month.
I’m not sure how you reach the conclusion that nuclear is not significantly more expensive.
Here’s the summary for the wikipedia article you mentioned in your comment:
Different methods of electricity generation can incur a variety of different costs, which can be divided into three general categories: 1) wholesale costs, or all costs paid by utilities associated with acquiring and distributing electricity to consumers, 2) retail costs paid by consumers, and3) external costs, or externalities, imposed on society. Wholesale costs include initial capital, operations & maintenance (O&M), transmission, and costs of decommissioning. Depending on the local regulatory environment, some or all wholesale costs may be passed through to consumers. These are costs per unit of energy, typically represented as dollars/megawatt hour (wholesale). The calculations also assist governments in making decisions regarding energy policy. On average the levelized cost of electricity from utility scale solar power and onshore wind power is less than from coal and gas-fired power stations,: TS-25 but this varies a lot depending on location.: 6–65
I’m not sure what you are referencing, but there are good reasons why nuclear power is expensive: lots of engineering and construction hours, strick safety and quality standards for design and materials, and no externalities, since decommissioning and waste handling have to be accounted and baked into the final utility cost to consumers. In other words, even if it’s difficult to pay off a nuclear power plant (in a liberalized energy market of course) it’s still money well spent. The same requirements and expectations should have to apply to other industries as well.
Why? Nuclear power is the most complex and expensive option of any clean energy source from what I know.
And yet, after many decades of solar, wind construction. It is the energy source in that pie chart that is sizeable (just as much as all wind and solar) and extremely stable (probably for the last 50 years), without any major construction in the past 30 years minimum.
Wind/solar only ramped up in the last 10 years, not decades. That’s when they got cheap. Really cheap. It’s nuclear that had a huge head start.
To be fair, Plant Vogtle just turned on Unit 3 earlier this year and Unit 4 should be coming soon.
modern gen 4 plants are MUCH simpler, foregoing PWR loop entirely in favor of liquid metal/salt type reactors, with various different design choices that are all much simpler, and cheaper to build/maintain.
If we see actual development in that field it’s not hard to imagine them playing with the fossil fuels, possibly renewables as well given the base load productivity, and relative lack of waste.
That’s a good thing. It means lots of hours of well paying engineering and construction work.
Nearly all of nuclear in the USA was built decades ago. Instead of being “paid off” and being cheaper, its still more expensive to generate electricity with nuclear than nearly all other electricity sources in the USA.
Nuclear is the most regulated one. Start requiring full recycling / disposal of solar or wind and how expensive do they get?
Nuclear is the most regulated: True. Accidents in nuclear have the most consequence, by far, of any generation source.
I would imagine that if we’re just going for disposal, solar and wind are still pretty cheap. With zero recycling wind turbine blades can just be buried after their 25 year life cycle. source.
Same landfill disposal option is available for solar panels at $1 to $5 per panel. source
This would be the level of disposal nuclear has, except low and high level nuclear waste is much more costly and potentially destructive even after disposal.
Burying it in the ground with no considerations for leachants is not what nuclear disposal is.
It’s not significantly more expensive though. https://en.wikipedia.org/wiki/Cost_of_electricity_by_source
And even if it was, it has other benefits.
Like using significantly less land, and being safer.
It can also work as a source of heat for district heating or various industrial processes, and since the plants themselves have no emissions, they can be reasonably placed in cities for this purpose without harming people. Using heat directly is more efficient than converting it to and from electricity.
Nuclear has it’s place.
I’m looking at that source it shows:
At the most generous calculation (of nuclear costly only $6,695) that puts nuclear power at 5 x more expensive that solar PV. So if you have a theoretical pure electricity bill on solar PV of $100/month, your theoretical pure electricity bill on nuclear of $500/month.
I’m not sure how you reach the conclusion that nuclear is not significantly more expensive.
Here’s the summary for the wikipedia article you mentioned in your comment:
Different methods of electricity generation can incur a variety of different costs, which can be divided into three general categories: 1) wholesale costs, or all costs paid by utilities associated with acquiring and distributing electricity to consumers, 2) retail costs paid by consumers, and 3) external costs, or externalities, imposed on society. Wholesale costs include initial capital, operations & maintenance (O&M), transmission, and costs of decommissioning. Depending on the local regulatory environment, some or all wholesale costs may be passed through to consumers. These are costs per unit of energy, typically represented as dollars/megawatt hour (wholesale). The calculations also assist governments in making decisions regarding energy policy. On average the levelized cost of electricity from utility scale solar power and onshore wind power is less than from coal and gas-fired power stations,: TS-25 but this varies a lot depending on location.: 6–65
article | about
I’m not sure what you are referencing, but there are good reasons why nuclear power is expensive: lots of engineering and construction hours, strick safety and quality standards for design and materials, and no externalities, since decommissioning and waste handling have to be accounted and baked into the final utility cost to consumers. In other words, even if it’s difficult to pay off a nuclear power plant (in a liberalized energy market of course) it’s still money well spent. The same requirements and expectations should have to apply to other industries as well.